FUZZY GENERALIZED β -CONTINUITY AND FUZZY GENERALIZED β - γ -CONTINUITY IN FUZZY TOPOLOGICAL SPACES

Sivashanmugaraja C.¹, Hatira G.²

¹ Department of Mathematics, Periyar Government Arts College, Cuddalore, Tamil Nadu, India
² Department of Mathematics, Kafkas University, Kars, Turkey e-mail: <u>csrajamaths@yahoo.co.in</u>, <u>hatira.gunerhan@kafkas.edu.tr</u>

Abstract. This study is aimed to introduce a new type of fuzzy generalized continuities called fuzzy generalized β -continuity and fuzzy generalized β - γ -continuity. We also formulate the definitions of fuzzy generalized β -open maps, fuzzy generalized β - γ -open maps, fuzzy generalized β -irresolute and fuzzy generalized β - γ -irresolute in fuzzy topological spaces. We prove that every fuzzy continuous map is fg β -continuous as well as that fg β -irresolute map is fg β -continuous. Also we show that every fuzzy continuous map is fg β_{γ} -continuous as well as that every fg β_{γ} -irresolute map is fg β_{γ} -continuous. Furthermore, we demonstrate some of their properties and theorems.

Keywords: Fuzzy β - γ -open, fuzzy generalized β - γ -closed set, fuzzy generalized β -continuous, fuzzy generalized β - γ -open map.

AMS Subject Classification: 54A40, 54C10, 54C20.

1. Introduction

In 1965, Zadeh [8] introduced the notion of fuzzy sets and fuzzy sets operations. The fuzzy concept has invaded almost all branches of mathematics. Fuzzy sets have applications in many fields such as decision making, pattern recognition, medical diagnosis problems. The notion of fuzzy topology was introduced by Chang [2]. Since then, many notions in the general topology such as generalized closed set, generalized open set, generalized continuous, generalized irresolute, generalized open map, generalized closed maps have extended to fuzzy topological spaces. Kasahara [4] defined an operation γ in topological spaces. The notion of γ open fuzzy set was introduced by Kalitha and Das[3]. Balasubramanian [1] initiated the notion of β -open fuzzy sets. Fuzzy β - γ -open set was introduced by Sivashanmugaraja and Vadivel [6]. A mapping is continuous specifically if its pre images of open sets are again open sets. In this paper, we introduce and investigate the properties of fuzzy generalized β -continuity and fuzzy generalized β - γ continuity in fuzzy topological spaces. Notations, definitions and preliminaries are given the section 2. The main results of the paper appear in section 3 and 4. In section 3, we prove that every fuzzy continuous map is $fg\beta$ -continuous as well as that fg β -irresolute mapping is fg β -continuous. Also we show that the composition of two fuzzy generalized β - γ -continuous mappings need not be fuzzy generalized β - γ -continuous. Finally we investigate the relationship between fuzzy generalized β -continuity and fuzzy generalized β - γ -continuity maps.

2. Preliminaries

Throughout this paper, (X, τ) or X always mean a fuzzy topological space. By <u>0</u> and <u>1</u>, we mean the constant fuzzy sets taking on the values 0 and 1 on X respectively. Now we recall the following basic definitions which we used in this paper.

Definition 2.1. [1] Let λ be any fuzzy set in a fts X. Then λ is said to be fuzzy β -open if $\lambda \leq cl(int(cl(\lambda)))$. The complement of a fuzzy β -open set is said to be fuzzy β -closed.

Definition 2.2. [1] Let λ be a fuzzy set in a fts X. Then the β -interior of λ is defined as β int(λ) = V{ $\mu : \mu \le \lambda, \mu \in F\beta O(X)$ } and the β -closure of λ is defined as β cl(λ) = Λ { $\mu : \mu \ge \lambda, \mu \in F\beta C(X)$ }.

Definition 2.3. [6] Let λ be any fuzzy set in a fts X. Then λ is said to be fuzzy β - γ -open if $\lambda \leq cl(\tau_{\gamma}-int(cl(\lambda)))$. The complement of a fuzzy β - γ -open set is said to be fuzzy β - γ -closed.

Definition 2.4. [5] Let λ be a fuzzy set in a fts X. Then the β - γ -interior of λ is defined as β int_{γ}(λ) = \vee { μ : $\mu \le \lambda$, $\mu \in F\beta_{\gamma}O(X)$ } and the β - γ -closure of λ is defined as β cl_{γ}(λ) = \wedge { μ : $\mu \ge \lambda$, $\mu \in F\beta_{\gamma}C(X)$ }.

Definition 2.5. [7] A fuzzy subset λ of a fts X is said to be fuzzy generalized β -closed if β cl(λ) $\leq \mu$, whenever $\lambda \leq \mu$ and μ is fuzzy open in X. The complement of fuzzy generalized β -closed set is said to be fuzzy generalized β -open.

Definition 2.6. [2] A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is called

(1) fuzzy continuous, if $\theta^{-1}(\mu)$ is a fuzzy open set of X, for every fuzzy open set of Y;

(2) fuzzy open, if for every fuzzy open set μ in X, $\theta(\mu)$ is fuzzy open in Y;

(3) fuzzy closed, if for every fuzzy closed set μ in X, $\theta(\mu)$ is fuzzy closed in Y.

3. Fuzzy Generalized β-continuous Mapping

In this section, we introduce fuzzy generalized β -continuous maps, fuzzy generalized β -irresolute maps, fuzzy generalized β -closed maps and fuzzy generalized β -open maps in fuzzy topological spaces and study some of their properties.

Definition 3.1. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is called fuzzy generalized β -continuous (briefly, fg β -continuous), if the inverse image of every closed fuzzy set of Y is g β -closed fuzzy set of X.

Theorem 3.1. A mapping $\theta : (X, \tau_X) \to (Y, \tau_Y)$ is fg β -continuous iff $\theta^{-1}(\lambda)$ is g β -open fuzzy set in X, for every open fuzzy set λ in Y.

Proof. Let λ be an open fuzzy set of Y. Then $1-\lambda$ is a g β -closed fuzzy set of Y. Since θ is fg β -continuous, we obtain $\theta^{-1}(1-\lambda) = 1-\theta^{-1}(\lambda)$ is g β -closed fuzzy set of X. Thus $\theta^{-1}(\lambda)$ is g β -open fuzzy set of X.

Converse is obvious.

Theorem 3.2. If θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is fg β -continuous, then

(i) For every fuzzy point x_α of X and every λ in Y such that $\theta(x_\alpha) \mathrel{q} \lambda,$ there exists a

g β -open fuzzy set μ of X such that $x_{\alpha} \in \mu$ and $\theta(\mu) \leq \lambda$.

(ii) For every fuzzy point x_{α} of X and every λ in Y such that $\theta(x_{\alpha}) q \lambda$, there exists a $g\beta$ -open fuzzy set μ of X such that $x_{\alpha} q \mu$ and $\theta(\mu) \leq \lambda$.

Proof. (i) Let x_{α} be a fuzzy point of X, then $\theta(x_{\alpha})$ is a fuzzy point of Y. Now let λ be an open fuzzy set in Y such that $\theta(x_{\alpha}) \neq \lambda$. Take $\mu = \theta^{-1}(\lambda)$. Since θ is fg β -continuous, we obtain μ is g β -open fuzzy set of X and $x_{\alpha} \in \mu$, $\theta(\mu) = \theta(\theta^{-1}(\lambda)) \leq \lambda$. (ii) Let x_{α} be a fuzzy point of X and let λ in Y such that $\theta(x_{\alpha}) \neq \lambda$. Take $\mu = \theta^{-1}(\lambda)$. Since θ is fg β -continuous, we obtain μ is g β -open fuzzy set of X, such that $x_{\alpha} \neq \mu$ and $\theta(\mu) = \theta(\theta^{-1}(\lambda)) \leq \lambda$.

Theorem 3.3. Every fuzzy continuous map is $fg\beta$ -continuous

Proof. Let θ : $(X, \tau_X) \to (Y, \tau_Y)$ be a fuzzy continuous map. Let λ be an open fuzzy set in Y. Since θ is fuzzy continuous, $\theta^{-1}(\lambda)$ is an open fuzzy set in X. And therefore $\theta^{-1}(\lambda)$ is g β -open fuzzy set in X. Thus θ is fg β -continuous map.

The converse of the above theorem 3.3 need not be true as shown in the following example.

Example 3.1. Let X=Y={a, b, c} and $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in I^X$ defined by $\lambda_1 = \underline{0.3}, \lambda_2 = \underline{0.4}, \lambda_3(a) = 0.8, \lambda_3(b) = 0.7, \lambda_3(c) = 0.5, \lambda_4(a) = 0.5, \lambda_4(b) = 0.6, \lambda_4(c) = 0.3$. Let $\tau_X = \{\underline{1}, \underline{0}, \lambda_1, \lambda_2\}$ and $\tau_Y = \{\underline{1}, \underline{0}, \lambda_3, \lambda_4\}$. Then (X, τ_X) and (Y, τ_Y) are fts. A mapping $\theta: (X, \tau_X) \to (Y, \tau_Y)$ defined as $\theta(a)=b, \theta(b)=c, \theta(c)=a$. Then θ is fg β -continuous map but not fuzzy continuous.

Definition 3.2. A mapping θ : $(X, \tau_X) \to (Y, \tau_Y)$ is called fuzzy β -generalized irresolute (briefly fg β -irresolute), if the inverse image of every g β -closed fuzzy set of Y is g β -closed fuzzy set of X.

Theorem 3.4. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is fg β -irresolute iff $\theta^{-1}(\lambda)$ is g β -open fuzzy set in X, for every g β -open fuzzy set λ in Y.

Theorem 3.5. Every $fg\beta$ -irresolute mapping is $fg\beta$ -continuous.

Proof. Let θ : $(X, \tau_X) \to (Y, \tau_Y)$ is fg β -irresolute . Let μ be a closed fuzzy set in Y. Then clearly μ is g β -closed fuzzy set in Y. Since θ is fg β - irresolute, we have $\theta^{-1}(\mu)$ is a g β -closed fuzzy set in X. Hence θ is fg β -continuous.

The converse of the above theorem 3.5 need not be true as shown in the following example.

Example 3.2. Let $X=Y=\{a, b, c\}$ and $\lambda_1, \lambda_2 \in I^X$ defined by $\lambda_1 = \underline{0.3}, \lambda_2 = \underline{0.4}$. Let $\tau_X = \{\underline{1}, \underline{0}, \lambda_1, \lambda_2\}$ and $\tau_Y = \{\underline{1}, \underline{0}, \lambda_2\}$. Then (X, τ_X) and (Y, τ_Y) are fts. Let $\theta: (X, \tau_X) \to (Y, \tau_Y)$ be an identity mapping. Then θ is fg β -continuous map but not fg β -irresolute.

Theorem 3.6. Let θ_1 : $(X, \tau_X) \to (Y, \tau_Y)$ and θ_2 : $(Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. (i) If θ_1 is fg β -continuous and θ_2 is fuzzy continuous, then $(\theta_2 \circ \theta_1)$: $(X, \tau_X) \to (Z, \tau_Z)$ is fg β -continuous.

(ii) If θ_1 and θ_2 are fg β -irresolute mappings, then $(\theta_2 \circ \theta_1)$: $(X, \tau_X) \to (Z, \tau_Z)$ is fg β -irresolute.

(iii) If θ_1 is fg β -irresolute and θ_2 is fg β -continuous, then $(\theta_2 \circ \theta_1)$: $(X, \tau_X) \rightarrow (Z, \tau_Z)$ is fg β -continuous.

Proof. (i) Let μ be a closed fuzzy subset of Z. Since θ_2 is fuzzy continuous, we obtain $\theta_2^{-1}(\mu)$ is closed fuzzy set of Y. Now θ_1 is fg β -continuous and $\theta_2^{-1}(\mu)$ is closed fuzzy set of Y, so by definition of fg β -continuous, $\theta_1^{-1}(\theta_2^{-1}(\mu)) = (\theta_2 \circ \theta_1)^{-1}(\mu)$ is g β -closed fuzzy set of X. Thus $(\theta_2 \circ \theta_1)$ is fg β -continuous.

(ii) Let μ be g β -closed fuzzy subset of Z. Since θ_2 is fg β -irresolute, we obtain $\theta_2^{-1}(\mu)$ is g β -closed fuzzy set of Y. Also θ_1 is fg β -irresolute, so $\theta_1^{-1}(\theta_2^{-1}(\mu)) = (\theta_2 \circ \theta_1)^{-1}(\mu)$ is g β -closed fuzzy set of X. Hence $(\theta_2 \circ \theta_1)$ is fg β -irresolute.

(iii) Let μ be a closed fuzzy subset of Z. Since θ_2 is fg β -continuous, $\theta_2^{-1}(\mu)$ is g β closed fuzzy subset of Y. Now θ_1 is fg β -irresolute, so inverse image of each g β closed fuzzy set of Y is g β -closed fuzzy set of X. Thus $\theta_1^{-1}(\theta_2^{-1}(\mu)) = (\theta_2 \circ \theta_1)^{-1}(\mu)$ is g β -closed fuzzy set of X. Thus $(\theta_2 \circ \theta_1)$ is fg β -continuous.

Definition 3.3. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is called fuzzy generalized β -open (briefly fg β -open), if the image of each open fuzzy set in X is g β -open fuzzy set in Y.

Definiton 3.4. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is called fuzzy generalized gβ-closed (briefly fgβ-closed), if the image of each closed fuzzy set in X is gβ-closed fuzzy set in Y.

Example 3.3. Let $X=Y=\{a, b, c\}$ and $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in I^X$ defined by $\lambda_1 = \underline{0.2}, \lambda_2 = \underline{0.5}, \lambda_3 (a) = 0.8, \lambda_3 (b) = 0.7, \lambda_3 (c) = 0.5, \lambda_4 (a) = 0.5, \lambda_4 (b) = 0.6, \lambda_4 (c) = 0.3$. Let $\tau_X = \{\underline{1}, \underline{0}, \lambda_1, \lambda_2\}$ and $\tau_Y = \{\underline{1}, \underline{0}, \lambda_3, \lambda_4\}$. Then (X, τ_X) and (Y, τ_Y) are fts. Let θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ be an identity mapping. Then θ is fg β -open and fg β -closed map.

Theorem 3.7. If θ_1 : $(X, \tau_X) \to (Y, \tau_Y)$ is fuzzy closed and $\theta_2 : (Y, \tau_Y) \to (Z, \tau_Z)$ is fg β -closed, then $(\theta_2^{\circ} \theta_1)$: $(X, \tau_X) \to (Z, \tau_Z)$ is fg β -closed.

Proof. Let λ be a closed fuzzy set in X. Since θ_1 is fuzzy closed, we obtain $\theta_1(\lambda)$ is closed fuzzy set in Y. Also θ_2 is fg β -closed, $\theta_2(\theta_1(\lambda))$ is g β -closed fuzzy set in Z. But $\theta_2(\theta_1(\lambda)) = (\theta_2 \circ \theta_1)(\lambda)$ is g β -closed fuzzy set in Z. Therefore $(\theta_2 \circ \theta_1)$ is fg β -closed.

Theorem 3.8. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is fg β -closed iff for every fuzzy set λ of Y and for every open fuzzy set μ such that $\theta^{-1}(\lambda) \leq \mu$, there is a g β -open fuzzy set η of Y such that $\lambda \leq \eta$ and $\theta^{-1}(\eta) \leq \mu$.

Proof. Let θ be a fg β -closed map. Let λ be a fuzzy set of Y and μ be an open fuzzy set of X such that $\theta^{-1}(\lambda) \leq \mu$. Then $\eta = 1$ -f(1- μ) is a g β -open fuzzy set in Y such that $\lambda \leq \eta$ and $\theta^{-1}(\eta) \leq \mu$.

Conversely, suppose that μ is a closed fuzzy set of X. Then $\theta^{-1}(1-\theta(\mu)) \leq 1-\mu$. and 1- μ is an open fuzzy set. By hypothesis, there is a g β -open fuzzy set η of Y such that $1-\theta(1-\eta) \leq \lambda$ and $\theta^{-1}(\lambda) \leq 1-\mu$. So $\mu \leq 1-\theta^{-1}(\lambda)$. Thus $1-\lambda \leq \theta(\lambda) \leq \theta(1-\theta^{-1}(\lambda)) \leq 1-\lambda$. which implies $\theta(\mu) = 1-\lambda$. Since $1-\lambda$ is g β -closed fuzzy set, $\theta(\mu)$ is g β -closed fuzzy set and so θ is a fg β -closed map.

Theorem 3.9. Let $\theta_1: (X, \tau_X) \to (Y, \tau_Y)$ and $\theta_2: (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings such that $(\theta_2 \circ \theta_1): (X, \tau_X) \to (Z, \tau_Z)$ is fg β -closed map (i) If θ_1 is fuzzy continuous and surjective, then θ_2 is fg β -closed map.

(i) If O_1 is fuzzy continuous and surjective, then O_2 is typ-closed map

(ii) If θ_2 is fg\beta-irresolute and injective, then θ_1 is fgβ-closed map.

Proof. (i) Let μ be a closed fuzzy set of Y. Since θ_1 is fuzzy continuous, we obtain $\theta^{-1}(\mu)$ is closed fuzzy set in X. Also $(\theta_2 \circ \theta_1)$ is fg β -closed map, then $(\theta_2 \circ \theta_1)(\theta^{-1}(\mu)) = \theta_2(\mu)$ is g β -closed fuzzy set in Z. Thus θ_2 is fg β -closed map.

(ii) Let μ be a closed fuzzy set in X. Then $(\theta_2 \circ \theta_1)(\mu)$ is g β -closed fuzzy set in Z and so $\theta_2^{-1}(\theta_2 \circ \theta_1)(\mu)) = \theta(\mu)$ is g β -closed fuzzy set in Y. Since θ_2 is fg β -irresolute and injective. Thus θ is a fg β -closed map.

Theorem 3.10. If λ is $g\beta$ -closed fuzzy set in X and θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is bijective, fuzzy continuous and $fg\beta$ -closed, then $\theta(\lambda)$ is $g\beta$ -closed fuzzy set in Y.

Proof. Let $\theta(\lambda) \leq \mu$, where μ be an open fuzzy set in Y. Since θ is fuzzy continuous, $\theta^{-1}(\mu)$ is an open fuzzy set in X containing λ . Thus $\beta cl(\lambda) \leq \theta^{-1}(\mu)$ as λ is g β -closed fuzzy set. Since θ is fg β -closed, $\theta(\beta cl(\lambda))$ is g β -closed fuzzy set contained in the open fuzzy set, which implies $\beta cl(\theta(\beta cl(\lambda))) \leq \mu$ and thus $\beta cl(\theta(\lambda)) \leq \mu$. So $\theta(\lambda)$ is g β -closed fuzzy set in Y.

4. Fuzzy Generalized β-γ-continuous mapping

In this section, we introduce fuzzy generalized β - γ -closed sets, fuzzy generalized β - γ -continuous maps and fuzzy generalized β - γ -irresolute maps in fuzzy topological spaces. Also we discuss the relation between fuzzy generalized β -continuity and fuzzy generalized β - γ -continuity.

Definition 4.1. A fuzzy subset λ of a fts X is said to be fuzzy generalized β - γ -closed (briefly fg β_{γ} -closed) if $\beta cl_{\gamma}(\lambda) \leq \mu$, whenever $\lambda \leq \mu$ and μ is fuzzy open in X. The complement of fuzzy generalized β - γ -closed set is said to be fuzzy generalized β - γ -open.

Definition 4.2. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is called fuzzy generalized β - γ continuous (briefly fg β_{γ} -continuous), if the inverse image of every closed fuzzy set
of Y is $g\beta_{\gamma}$ -closed fuzzy set of X.

Theorem 4.1. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is $fg\beta_{\gamma}$ -continuous iff $\theta^{-1}(\lambda)$ is $g\beta_{\gamma}$ open fuzzy set in X, for every open fuzzy set λ in Y.

Proof. Let λ be an open fuzzy set of Y. Then $1-\lambda$ is a $g\beta_{\gamma}$ -closed fuzzy set of Y. Since θ is $fg\beta_{\gamma}$ -continuous, we obtain $\theta^{-1}(1-\lambda) = 1-\theta^{-1}(\lambda)$ is $g\beta_{\gamma}$ -closed fuzzy set of X. Thus $\theta^{-1}(\lambda)$ is $g\beta_{\gamma}$ -open fuzzy set of X. Converse is obvious.

Theorem 4.2. Every fuzzy continuous map is $fg\beta_{\gamma}$ -continuous.

Proof. Let $\theta : (X, \tau_X) \to (Y, \tau_Y)$ be a fuzzy continuous map. Let λ be an open fuzzy set in Y. Since θ is fuzzy continuous, $\theta^{-1}(\lambda)$ is an open fuzzy set in X. And therefore $\theta^{-1}(\lambda)$ is $g\beta_{\gamma}$ -open fuzzy set in X. Thus θ is $fg\beta_{\gamma}$ -continuous map.

The converse of the above theorem 4.2 need not be true as shown in the following example.

Example 4.1. Let X=Y={a, b, c} and λ_1 , λ_2 , λ_3 , $\lambda_4 \in I^X$ defined by $\lambda_1 = \underline{0.7}$, $\lambda_2 = \underline{0.8}$, λ_3 (a) = 0.5, λ_3 (b) = 0.4, λ_3 (c) = 0.9, λ_4 (a) = 0.6, λ_4 (b) = 0.5, λ_4 (c) = 0.9. Let $\tau_X = \{\underline{1}, \underline{0}, \lambda_1, \lambda_2\}$ and $\tau_Y = \{\underline{1}, \underline{0}, \lambda_3, \lambda_4\}$. Then (X, τ_X) and (Y, τ_Y) are fts. Define an operation γ on τ_X by $\gamma(\underline{1}) = \underline{1}$, $\gamma(\underline{0}) = \underline{0}$, $\gamma(\lambda_1) = \lambda_1$, $\gamma(\lambda_2) = \underline{0.9}$ A mapping θ : (X, τ_X) \rightarrow (Y, τ_Y) be defined as $\theta(a)=b$, $\theta(b)=a$, $\theta(c)=c$. Then θ is fg β_γ -continuous map but not fuzzy continuous.

Definition 4.3. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is called fuzzy generalized β - γ -irresolute (briefly fg β_{γ} -irresolute), if the inverse image of every g β_{γ} -closed fuzzy set of Y is g β_{γ} -closed fuzzy set of X.

Theorem 4.3. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$) is $fg\beta_{\gamma}$ -irresolute iff $\theta^{-1}(\lambda)$ is $g\beta_{\gamma}$ -open fuzzy set in X, for every $g\beta_{\gamma}$ -open fuzzy set λ in Y.

Theorem 4.4. Every $fg\beta_{\gamma}$ -irresolute mapping is $fg\beta_{\gamma}$ -continuous.

Proof. Let θ : $(X, \tau_X) \to (Y, \tau_Y)$ is $fg\beta_{\gamma}$ -irresolute. Let μ be a closed fuzzy set in Y. Then clearly μ is $g\beta_{\gamma}$ -closed fuzzy set in Y. Since θ is $fg\beta_{\gamma}$ -irresolute, we have $\theta^{-1}(\mu)$ is a $g\beta_{\gamma}$ -closed set in X. Hence θ is $fg\beta_{\gamma}$ -continuous.

The converse of the above theorem 4.4 need not be true as shown in the following example.

Example 4.2. Consider an Example 4. Define an operation γ on τ_X by $\gamma(\underline{1}) = \underline{1}$, $\gamma(\underline{0}) = \underline{0}, \gamma(\lambda_1) = \lambda_1, \gamma(\lambda_2) = \underline{cl}(\lambda_2)$ and define an operation γ on τ_Y by $\gamma(\underline{1}) = \underline{1}, \gamma(\underline{0}) = \underline{0}, \gamma(\lambda_1) = \lambda_1, \gamma(\lambda_2) = \underline{cl}(\lambda_2)$. Let $\theta: (X, \tau_X) \to (Y, \tau_Y)$ be an identity mapping. Then θ is $fg\beta_{\gamma}$ -continuous map but not $fg\beta_{\gamma}$ -irresolute.

Theorem 4.5. Let θ_1 : $(X, \tau_X) \to (Y, \tau_Y)$ and θ_2 : $(Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. (i) If θ_1 is $fg\beta_\gamma$ continuous and θ_2 is fuzzy continuous, then $(\theta_2^\circ \theta_1)$: $(X, \tau_X) \to (Z, \tau_Z)$ is $fg\beta_\gamma$ -continuous.

(ii) If θ_1 and θ_2 are fg β_γ -irresolute mappings, then $(\theta_2 \circ \theta_1)$: $(X, \tau_X) \rightarrow (Z, \tau_Z)$ is fg β_γ -irresolute.

(iii) If θ_1 is fg β_γ -irresolute and θ_2 is fg β_γ -continuous, then $(\theta_2 \circ \theta_1)$: $(X, \tau_X) \to (Z, \tau_Z)$ is fg β_γ -continuous.

Proof. (i) Let μ be a closed fuzzy subset of Z. Since θ_2 is fuzzy continuous, we obtain $\theta_2^{-1}(\mu)$ is closed fuzzy set of Y. Now θ_1 is fg β_γ -continuous and $\theta_2^{-1}(\mu)$ is closed fuzzy set of Y, so by definition of fg β_γ -continuous,

 $\theta_1^{-1}(\theta_2^{-1}(\mu)) = (\theta_2^{\circ} \theta_1)^{-1}(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy set of X. Thus $(\theta_2^{\circ} \theta_1)$ is $fg\beta_{\gamma}$ -continuous.

(ii) Let μ be $g\beta_{\gamma}$ -closed fuzzy subset of Z. Since θ_2 is $fg\beta_{\gamma}$ -irresolute, we obtain $\theta_2^{-1}(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy set of Y. Also θ_1 is $fg\beta_{\gamma}$ -irresolute, so

 $\theta_1^{-1}(\theta_2^{-1}(\mu)) = (\theta_2^{\circ} \theta_1)^{-1}(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy set of X. Hence $(\theta_2^{\circ} \theta_1)$ is $fg\beta_{\gamma}$ -irresolute.

(iii) Let μ be a closed fuzzy subset of Z. Since θ_2 is $fg\beta_{\gamma}$ -continuous, $\theta_2^{-1}(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy subset of Y. Since θ_1 is $fg\beta_{\gamma}$ -irresolute, inverse image of each $g\beta_{\gamma}$ -closed fuzzy set of Y is $g\beta_{\gamma}$ -closed fuzzy set of X.

Thus $\theta_1^{-1}(\theta_2^{-1}(\mu)) = (\theta_2^{\circ}, \theta_1)^{-1}(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy set of X. Thus $(\theta_2^{\circ}, \theta_1)$ is $fg\beta_{\gamma}$ -continuous.

Definition 4.4. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is called

(i) fuzzy generalized β - γ -open (briefly fg β_{γ} -open), if the image of each open fuzzy set in X is g β_{γ} -open fuzzy set in Y:

(ii) fuzzy generalized β - γ -closed (briefly fg β_{γ} -closed), if the image of each closed fuzzy set in X is $g\beta_{\gamma}$ -closed fuzzy set in Y.

Theorem 4.6. If θ_1 : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is fuzzy closed and θ_2 : $(Y, \tau_Y) \rightarrow (Z, \tau_Z)$ is

fg β_γ -closed, then $(\theta_2^\circ \ \theta_1)$: $(X, \tau_X) \to (Z, \tau_Z)$ is fg β_γ -closed.

Proof. Let λ be a closed fuzzy set in X. Since θ_1 is fuzzy closed, we obtain $\theta_1(\lambda)$ is closed fuzzy set in Y. Also θ_2 is $fg\beta_\gamma$ -closed, so $\theta_2(\theta_1(\lambda))$ is $g\beta_\gamma$ -closed fuzzy set in Z. But $\theta_2(\theta_1(\lambda)) = (\theta_2 \circ \theta_1)(\lambda)$. So $(\theta_2 \circ \theta_1)(\lambda)$ is $g\beta_\gamma$ -closed fuzzy set in Z. Therefore $(\theta_2 \circ \theta_1)$ is $fg\beta_\gamma$ -closed.

Theorem 4.7. A mapping θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is $fg\beta_{\gamma}$ -closed iff for every fuzzy set λ of Y and for every open fuzzy set μ such that $\theta^{-1}(\lambda) \leq \mu$, there is a $g\beta_{\gamma}$ -open fuzzy set η of Y such that $\lambda \leq \eta$ and $\theta^{-1}(\eta) \leq \mu$.

Proof. Let θ be a fg β_{γ} -closed map. Let λ be a fuzzy set of Y and μ be an open fuzzy set of X such that $\theta^{-1}(\lambda) \leq \mu$. Then $\eta = 1 \cdot \theta(1 \cdot \mu)$ is a g β_{γ} -open fuzzy set in Y such that $\lambda \leq \eta$ and $\theta^{-1}(\eta) \leq \mu$.

Conversely, suppose that μ is a closed fuzzy set of X. Then $\theta^{-1}(1-\theta(\mu)) \leq \mu$ and $1-\mu$ is an open fuzzy set. By hypothesis, there is a $g\beta_{\gamma}$ -open fuzzy set η of Y such that $1-\theta(1-\eta) \leq \lambda$ and $\theta^{-1}(\lambda) \leq 1-\mu$. So $\mu \leq \theta^{-1}(\lambda)$.

Thus $1-\lambda \leq \theta(\lambda) \leq \theta(1-\theta^{-1}(\lambda)) \leq 1-\lambda$, which implies $\theta(\mu) = 1-\lambda$. Since $1-\lambda$ is $g\beta_{\gamma}$ -closed fuzzy set, $\theta(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy set and so θ is a $fg\beta_{\gamma}$ -closed map.

Theorem 4.8. Let $\theta_1: (X, \tau_X) \to (Y, \tau_Y)$ and $\theta_2: (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings such that $(\theta_2 \circ \theta_1): (X, \tau_X) \to (Z, \tau_Z)$ is $fg\beta_\gamma$ -closed map (i) If θ_1 is fuzzy continuous and surjective, then θ_2 is $fg\beta_\gamma$ -closed map. (ii) If θ_2 is $fg\beta_\gamma$ -irresolute and injective, then θ_1 is $fg\beta_\gamma$ -closed map.

Proof. (i) Let μ be a closed fuzzy set of Y: Since θ_1 is fuzzy continuous, we obtain $\theta_1^{-1}(\mu)$ is closed fuzzy set in X. Also $(\theta_2 \circ \theta_1)$ is $fg\beta_{\gamma}$ -closed map, then $(\theta_2 \circ \theta_1)(\theta_1^{-1}(\mu)) = \theta_2(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy set in Z. Thus θ_2 is $fg\beta_{\gamma}$ -closed map. (ii) Let μ be a closed fuzzy set in X. Then $(\theta_2 \circ \theta_1)(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy set in Z and so $\theta_2^{-1}(\theta_2 \circ \theta_1)^1(\mu) = (\theta_1)(\mu)$ is $g\beta_{\gamma}$ -closed fuzzy set in Y. Since θ_2 is $fg\beta_{\gamma}$ -irresolute and injective. Thus θ_1 is a $fg\beta_{\gamma}$ -closed map.

Theorem 4.9. If λ is $g\beta_{\gamma}$ -closed fuzzy set in X and θ : $(X, \tau_X) \rightarrow (Y, \tau_Y)$ is bijective, fuzzy continuous and $fg\beta_{\gamma}$ -closed, then $\theta(\lambda)$ is $g\beta_{\gamma}$ -closed fuzzy set in Y.

Proof. Let $\theta(\lambda) \leq \mu$, where μ is an open fuzzy set in Y. Since θ is fuzzy continuous, $\theta^{-1}(\mu)$ is an open fuzzy set in X containing λ . Thus $\beta cl(\lambda) \leq \theta^{-1}(\mu)$ as λ is $g\beta_{\gamma}$ -closed fuzzy set. Since θ is $fg\beta_{\gamma}$ -closed, $\theta(\beta cl(\lambda))$ is $g\beta_{\gamma}$ -closed fuzzy set contained in the open fuzzy set μ , which implies $\beta cl(\theta(\beta cl(\lambda))) \leq \mu$ and thus $\beta cl(\theta(\lambda)) \leq \mu$. So $\theta(\lambda)$ is $g\beta_{\gamma}$ -closed fuzzy set in Y.

Theorem 4.10. Every fuzzy generalized β - γ -continuous map is fuzzy generalized β -continuous.

SIVASHANMUGARAJA C., HATIRA GUNERHAN: Fuzzy Generalized β-Continuity...

Proof. Let θ : $(X, \tau_X) \to (Y, \tau_Y)$ be mapping. Let λ be a closed fuzzy set in Y. Since θ is fuzzy generalized β - γ -continuous, we have $\theta^{-1}(\lambda)$ is $g\beta_{\gamma}$ -closed fuzzy set in X. Then clearly $\theta^{-1}(\lambda)$ is $g\beta$ -closed fuzzy set in X. Thus θ is fuzzy generalized β -continuous.

The converse of the above theorem 4.10 need not be true as shown in the following example.

Example 4.3. Let $X=Y=\{a, b, c\}$ and $\lambda_1, \lambda_2 \in I^X$ defined by $\lambda_1 = \underline{0.4}; \lambda_2 = \underline{0.5}$. Let $\tau_X = \{\underline{1}, \underline{0}, \lambda_1\}$ and $\tau_Y = \{\underline{1}, \underline{0}, \lambda_1, \lambda_2\}$. Then (X, τ_X) and (Y, τ_Y) are fts. Define an operation γ on τ_X by $\gamma(\underline{1}) = \underline{1}, \gamma(\underline{0}) = \underline{0}, \gamma(\lambda_1) = cl(\lambda_1)$. Let $\theta: (X, \tau_X) \to (Y, \tau_Y)$ be an identity mapping. Then θ is fg β -continuous map but not fg β_γ -continuous.

Remark 4.1. The composition of two fuzzy generalized β -continuous mappings need not be fuzzy generalized β -continuous as shown in the following example.

Example 4.4. Let $X=Y=Z=\{a, b, c\}$ and $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in I^X$ defined by $\lambda_1 = \underline{0.7}; \lambda_2 = \underline{0.4}; \lambda_3 = \underline{0.6}; \lambda_4 = \underline{0.2}$. Let $\tau_X = \{\underline{1}, \underline{0}, \lambda_1, \lambda_2\} \tau_Y = \{\underline{1}, \underline{0}, \lambda_3\}$ and $\tau_Z = \{\underline{1}, \underline{0}, \lambda_4\}$. Then clearly $(X, \tau_X), (Y, \tau_Y)$ and (Z, τ_Z) are fts. Let $\theta_1 : (X, \tau_X) \to (Y, \tau_Y)$ and $\theta_2 : (Y, \tau_Y) \to (Z, \tau_Z)$ be identity mappings. Then, θ_1 and θ_2 are fuzzy generalized β -continuous mappings but $(\theta_2 \circ \theta_1)$ is not fuzzy generalized β -continuous. Since, λ_4 is an open fuzzy set of (Z, τ_Z) but $(\theta_2 \circ \theta_1)$ (λ_4) is not a g β -open fuzzy set of X.

Remark 4.2. The composition of two fuzzy generalized β - γ -continuous mappings need not be fuzzy generalized β - γ -continuous as shown in the following example.

Example 4.5. Let $X=Y=Z=\{a, b, c\}$ and $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in I^X$ defined by $\lambda_1 = \underline{0.7}; \lambda_2 = \underline{0.4}; \lambda_3 = \underline{0.6}; \lambda_4 = \underline{0.3}$. Let $\tau_X = \{\underline{1}, \underline{0}, \lambda_1\}, \tau_Y = \{\underline{1}, \underline{0}, \lambda_2, \lambda_3\}$ and $\tau_Z = \{\underline{1}, \underline{0}, \lambda_4\}$. Then clearly $(X, \tau_X), (Y, \tau_Y)$ and (Z, τ_Z) are fts.

Define an operation γ on τ_X by $\gamma(\underline{1}) = \underline{1}$, $\gamma(\underline{0}) = \underline{0}$, $\gamma(\lambda_1) = cl(\lambda_1)$ and also define an operation γ on τ_Y by $\gamma(\underline{1}) = \underline{1}$, $\gamma(\underline{0}) = \underline{0}$, $\gamma(\lambda_2) = \lambda_2$, $\gamma(\lambda_3) = cl(\lambda_3)$.

Let $\theta_1: (X, \tau_X) \to (Y, \tau_Y)$ and $\theta_2: (Y, \tau_Y) \to (Z, \tau_Z)$ be identity mappings. Then, θ_1 and θ_2 are fuzzy generalized β - γ -continuous mappings but ($\theta_2^{\circ} \theta_1$) is not fuzzy generalized β - γ -continuous. Since, λ_4 is an open fuzzy set of (Z, τ_Z), but ($\theta_2^{\circ} \theta_1$) (λ_4) is not a $g\beta_\gamma$ -open fuzzy set of X.

Theorem 4.11. Let θ_1 : $(X, \tau_X) \to (Y, \tau_Y)$ and θ_2 : $(Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. If θ_1 is fuzzy generalized β -irresolute and θ_2 is fuzzy generalized β - γ -continuous mapping, then $(\theta_2 \circ \theta_1)$ is fuzzy generalized β -continuous.

Proof. Let μ be a closed fuzzy set of Z. Since θ_2 is fuzzy generalized β - γ -continuous, we obtain, $\theta_2^{-1}(\mu)$ is $g\beta_\gamma$ -closed fuzzy set in Y. Then clearly $\theta_2^{-1}(\mu)$ is $g\beta$ -closed fuzzy set in Y. By hypothesis, θ_1 is fuzzy $g\beta$ -irresolute, we obtain $\theta_1^{-1}(\theta_1)^{-1}(\mu) = (\theta_2 \circ \theta_1)^{-1}(\mu)$ is $g\beta_\gamma$ -closed fuzzy set in X. Thus $(\theta_2 \circ \theta_1)$ is fg β -continuous map.

5. Conclusion

In this paper, we introduce and investigated the notions of generalized β -continuity, generalized β - γ -continuity, generalized β -open map, generalized β - γ -open map, generalized β -irresolute and generalized β - γ -irresolute in fuzzy settings. We proved that every fuzzy generalized β - γ -continuous map is fuzzy generalized β -continuous but not converse. We showed that the composition of two fuzzy generalized β - γ -continuous (fuzzy generalized β -continuous) mappings need not be fuzzy generalized β - γ -continuous (fuzzy generalized β -continuous). There is a scope to study and extend these newly defined mappings.

6. Acknowledgement

The authors are very thankful to the referee for his valuable suggestions which resulted in the improvement of the paper.

REFERENCES

- 1. Balasubramanian G. On Fuzzy β-compact Spaces and Fuzzy β-Exampletremely disconnected Spaces, Kybernetika., V.33, 1997, pp.271-277.
- 2. Chang C.L. Fuzzy topological spaces, J. Math. Anal. Appl., V.24, 1968, pp.182-189.
- 3. Kalita B., Das N.R. Some Aspects of Fuzzy operations, The Journal of Fuzzy Mathematics, V.19 N.3, 2011, pp.531-540.
- 4. Kasahara S. Operation-Compact spaces, Math. Japonica, V.24, 1979, pp.97-105.
- 5. Sivashanmugaraja C., Antony Jerold S. Fuzzy β - γ -open Sets and Fuzzy β - γ -open Mappings, Submitted.
- 6. Sivashanmugaraja C., Vadivel A. Weak forms of fuzzy open sets, Global Journal of Pure and Applied Mathematics, V.13, 2017, pp.251-261.
- 7. Thakur S.S., Singh S. On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems, V.3, 1998, pp.383-391.
- 8. Zadeh, L.A. Fuzzy sets, Information and Control, V.8, 1965, pp.338-353.